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Abstract

An investigation of the natural convection boundary layer adjacent to an evenly heated semi-infinite plate with stratified ambient fluid
is undertaken using scaling analysis and numerical simulation. The scaling analysis is shown to provide a complete description of the flow
from start-up to full development, including the effect of the stratified ambient fluid. In particular it is shown that for the case with non-
stratified ambient fluid the fully developed flow is y dependent over the entire plate, where y is the vertical coordinate, while for the case
with stratified ambient fluid the fully developed flow is y dependent only in the region of the plate origin. A scaling is also obtained for the
y dependent, y independent transition location. All the scalings are validated using a full numerical solution of the governing equations.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fluid adjacent to a heated vertical wall undergoes
motion as the result of the transfer of heat from the wall
into the fluid. The warmer fluid is, except in some special
cases, less dense than its unheated surroundings, and rises
relative to the ambient cooler fluid. The flow may be exter-
nal, in which case the wall is located in a very large con-
tainer of ambient fluid, or internal, in which case the wall
is one of a closed container with other walls which may
be heated, cooled or insulated. These natural convection
flows are ubiquitous in nature and engineering, and form
a class of flows of fundamental fluid mechanics interest.

Solutions for external flows with a doubly infinite wall,
unsteady heating and a homogeneous ambient fluid have
been available for many years (see for example [1–3]).
However, in almost all actual applications, more realistic
initial conditions are appropriate. In particular, a stratified
ambient fluid is usual, and is in fact generally unavoidable.
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Solutions for the steady flow adjacent to a doubly infinite
vertical plate with a stratified ambient were first obtained
by [4]. Exact unsteady solutions for the case of an ambient
stratification are evidently confined to those reported by
[5,6], and more recently by [7,8]. In reality, vertical heated
walls are not doubly infinite, and in every application will
be of limited extent. The simplest model for this is a
semi-infinite plate, with a leading edge. The response of this
configuration to a variety of unsteady heating boundary
conditions and a homogeneous ambient fluid has been
extensively investigated experimentally and numerically,
in the context of both internal cavity flows (for example
[9–13] and others), and external flows (for example
[3,14–20] and others). These investigations focussed on
suddenly applied heating to the wall, with both isothermal
and isoflux wall boundary conditions.

Thus there is a well developed understanding of the
development of the thermal boundary layer adjacent to a
semi-infinite plate for suddenly applied isothermal and iso-
flux heating, at least for those cases where the flow remains
laminar. The understanding includes the transition of a
boundary layer to steady-state by means of the leading
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Nomenclature

g acceleration due to gravity
H length scale
p density normalised pressure
Pr Prandtl number, m/a
Ra global Rayleigh number, gbCwH4/ma
Ray local Rayleigh number at height y, gbCwy4/ma
Re Reynolds number, 2Cw/PrCs

t time
ts time scale for the growth of thermal boundary

layer
T temperature
T perturbation temperature
Tw plate temperature
Tws plate temperature scale at steady-state
T y ambient temperature gradient
u horizontal velocity
U characteristic velocity, aRa2/5/H
v vertical velocity
vs vertical velocity scale at steady-state
x horizontal coordinate
X dimensionless horizontal limit of computational

domain
y vertical coordinate
ytrans height of 2D to 1D transition
Y dimensionless vertical limit of computational

domain

Greek symbols

a fluid thermal diffusivity
b fluid thermal expansion coefficient
dT thermal boundary layer thickness
dTs thermal boundary layer thickness scale at

steady-state
m fluid kinematic viscosity
Cs ambient temperature gradient
Cw temperature gradient on plate
Dx dimensionless minimum grid size in horizontal

direction
Dy dimensionless minimum grid size in vertical

direction
Dt dimensionless time step
DT total temperature variation over boundary layer

Subscripts

t first partial derivative with respect to t
x, y first partial derivative with respect to x, y,

respectively
xx, yy second partial derivative with respect to x, y,

respectively

sΓdT
dy =

wΓ

Plate heat flux

q  =constant"

Background
stratification

dT =dx
—

Fig. 1. Definition.
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edge effect and the stability properties of the subsequent
steady boundary layer. However, none of these investiga-
tions into the unsteady behaviour of the semi-infinite plate
dealt with the case in which the ambient fluid is stratified.

Scaling laws for the fully developed natural convection
boundary layer adjacent to an evenly heated semi-infinite
plate with an isoflux boundary condition have been devel-
oped, together with a set of ordinary differential equations
derived from the governing equations using similarity
transforms with a slow down-stream variation boundary
layer assumption [21]. No such scales are currently avail-
able for the start up and transition to full development of
the isoflux plate. Similarly an exact solution is available
for the fully developed flow adjacent to an isoflux plate
with stable linear background temperature gradient away
from the plate origin [22], but no laws are currently avail-
able for the start up and transition phases of the flow, or
for the behaviour of the flow in the region near the plate
origin.

In this paper we develop scalings for the start-up, tran-
sition and full development of the natural convection
boundary layer adjacent to an evenly heated isoflux semi-
infinite plate, for both neutral and stable linear background
stratification. The basic configuration is shown in Fig. 1. In
particular we show using scaling that for the stratified case
the fully developed flow far from the plat‘ leading edge is
one dimensional, while that near the leading edge is two-
dimensional. We obtain a scaling for the plate location at
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which the one- to two-dimensional transition takes place.
The scaling formulae are all validated using full numerical
solutions of the governing Navier–Stokes equations for
Prandtl number Pr = 7.0.
2. Scaling

The governing equations of motion are the Navier–
Stokes equations expressed in two dimensional incompress-
ible form with the Oberbeck–Boussinesq approximation
for buoyancy, together with the temperature transport
equation, as follows:

ut þ uux þ vuy ¼ �px þ mðuxx þ uyyÞ; ð1Þ
vt þ uvx þ vvy ¼ �py þ mðvxx þ vyyÞ þ gbT ; ð2Þ
ux þ vy ¼ 0; ð3Þ
T t þ uT x þ vT y þ vCs ¼ aðT xx þ T yyÞ: ð4Þ

The temperature is represented as the sum of a background
temperature T and a perturbation from the background
temperature T. The temperature of the ambient fluid is as-
sumed to be x independent and linear in y, with T y ¼ Cs

either zero, corresponding to the non-stratified case, or po-
sitive and constant, corresponding to the stably stratified
case. The plate lies at x = 0 with the origin at y = 0, with
the plate boundary conditions

u ¼ v ¼ 0; T x ¼ �Cw at x ¼ 0 for y > 0; t P 0;

where the temperature gradient at the x = 0 boundary,
�Cw, is a constant.

Scalings will be obtained for the vertical velocity v, the
thermal boundary layer thickness dT, the start up time ts,
and the wall temperature Tw for both the stratified and
non-stratified cases.
2.1. Non-stratified, Cs = 0

The scaling analysis follows that of [9], in which scales
were derived for the start-up and full development of nat-
ural convection flow in a cavity with differentially heated
isothermal walls. In this analysis it is assumed that the
boundary layer thickness scale dT� y and the scaling is
not expected to be applicable in the region very near to
the plate origin.

The fluid is assumed to be initially quiescent with the
wall heating started at time t = 0. Heat will then be con-
ducted into the fluid adjacent to the wall creating a vertical
layer of thickness O(dT), where from (4)

dT � a1=2t1=2: ð5Þ

Buoyancy forces accelerate the fluid in this layer. For
Pr > 1 the buoyancy force in Eq. (2) will balance the vis-
cous force, of order Oðmv=d2

TÞ, in this region, giving

mv
at
� gbDT ;
where DT, the total temperature variation over the bound-
ary layer, is of order O(CwdT). Using (5) this may be writ-
ten as

DT � Cwa1=2t1=2:

Combining these scalings then gives a relation for the
boundary layer velocity scale during the start up phase as

v � gbCwt3=2m1=2

Pr3=2
: ð6Þ

The boundary layer will continue to grow until the heat
conducted into the fluid is balanced by that convected away
by the vertical convection term in Eq. (4). The vertical con-
vection term in Eq. (4) is of order O(vDT/y), while the con-
duction term is of order OðaDT=d2

TÞ, balancing these terms
will yield a scaling for the steady state velocity,

vs �
ay

d2
T

: ð7Þ

A scaling for the time to steady-state is then obtained by
combining relations (5)–(7) as follows:

gbCwt3=2m1=2

Pr3=2y
� 1

t
;

giving

t5=2 � Pr3=2y
gbCwm1=2

;

so that the time scale for the growth of the thermal bound-
ary layer is

ts �
y2

aRa2=5
y

; ð8Þ

where Ray = gbCwy4/ma is the local Rayleigh number based
on the plate location y.

An explicit form for the steady state velocity, vs, is
obtained by substituting relation (8) into (6),

vs �
gbCwm1=2

Pr3=2

y6=2

a3=2Ra6=10
y

! vs �
a
y

Ra2=5
y : ð9Þ

The relation (8) may then be combined with (5) to
obtain a scaling for the thermal boundary layer thickness
at steady-state,

dTs �
y

Ra1=5
y

: ð10Þ

The steady state temperature on the wall is then obtained
from the thermal boundary layer thickness and the temper-
ature gradient at the wall as

T ws �
Cwy

Ra1=5
y

: ð11Þ

The fully developed boundary layer with non-stratified
ambient fluid then consists of a combined thermal/velocity
boundary layer originating at the plate origin and increas-
ing in thickness with vertical distance from the leading
edge, as shown in Fig. 2.



Fig. 2. Schematic of fully developed boundary layer for non-stratified
ambient fluid.
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An exact solution is available for the initial, unsteady
phase of the flow development, presented in Goldstein
and Briggs [3] for flow on an infinite plate. In this case
the boundary layer continues to grow in time without
bound. No exact solution is available for the fully deve-
loped flow on the semi-infinite plate, considered here,
although an approximate solution may be obtained by
solving a reduced set of simultaneous ordinary differential
equations using a numerical method, as described in [21].
2.2. Stratified, Cs > 0

The scalings for the growth of the boundary layer when
a background stratification is included are the same as
those given above for no background stratification. The
time to steady-state and the steady state behaviour will
vary as a result of the extra vertical advection term in the
temperature transport equation. Again steady-state will
be achieved when the conduction of heat into the boundary
layer is balanced by vertical convection in Eq. (4),

vðCwdT=y þ CsÞ �
aCwdT

d2
T

; ð12Þ

where DT � CwdT. The first of these convection terms,
(vCwdT/y), is the same as that in the non-stratified case,
while the second, (vCs), is that associated with the back-
ground stratification. If the first term is dominant then
the steady state boundary layer will behave as for the
non-stratified case and dT will be as given above in (10),
in which case the first of the convection terms may be writ-
ten as

CwdT

y
� Cw

y4=5
ð13Þ
and this term is seen to reduce with increasing y. This term
will therefore be dominant for small y and the boundary
layer will behave as for the non-stratified case. For large
y this term will be small and the term associated with the
background stratification will be dominant. Thus for large
y the appropriate scale balance is obtained from the second
of the advection terms as

vCs �
aCw

dT

:

The velocity and boundary layer growth will be the same as
for the non-stratified case above, v � gbCwt3/2m1/2/Pr3/2,
dT � a1/2t1/2, which when substituted into the above expres-
sion gives

gbCwt3=2m1=2

Pr3=2
Cs �

a1=2Cw

t1=2
: ð14Þ

Extracting the time to steady-state for the stratified flow for
large y then gives

t2
s �

Pr
Csgb

! ts �
Pr

Csgb

� �1=2

: ð15Þ

The scale for the thermal boundary layer thickness for the
stratified flow at steady-state is then

dTs �
am

Csgb

� �1=4

ð16Þ

and the velocity scale is

vs � Cw

gb
m

� �1=4 a
Cs

� �3=4

: ð17Þ

The temperature on the wall at steady-state for the strati-
fied flow is obtained as

T ws � CwdT � Cw

am
Csgb

� �1=4

: ð18Þ

The scaling analysis predicts that at steady-state for
large y the thermal boundary layer thickness, velocity
and wall temperature are independent of y. Therefore in
the small y region near the plate origin the flow will behave
as for no background stratification, reaching a y dependent
steady-state. For large y the flow will develop to a steady
state in which the thermal boundary layer thickness and
velocity are y independent, and the full boundary tempera-
ture grows as the background stratification. This behaviour
is shown in Fig. 3, where the quantity ytrans locates the
point of transition from the small y two-dimensional flow
to the large y one-dimensional flow. The large y flow has
an exact solution that may be obtained by dropping all y

dependent terms from the governing equations. This solu-
tion, given below in non-dimensional form in Eqs. (35)
and (36), was obtained by Gill [4] for natural convection
in a rectangular cavity and, in the context of mountain
and valley winds, by Prandtl [23]. In a recent study by
Shapiro and Fedorovich [7], in which an exact start-up



Fig. 3. Schematic of fully developed boundary layer for stratified ambient
fluid.
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solution for the Pr = 1 case on an infinite plate was
derived, equivalent y-independent scalings to those pre-
sented here were used.

A scaling for ytrans is obtained as follows. It may be
assumed that the point of transition will correspond to
the location at which the two components of the vertical
convection term in Eq. (4) are in balance, that is

CwdT

y
� Cs:

Using the steady state boundary layer scale, dTs then gives

ytrans �
Cw

Cs

dTs �
Cw

Cs

ma
gbCs

� �1=4

: ð19Þ

This result may also be obtained by equating the scales for
dTs given by (10) and (16). However this dT scaling is only
valid for ytrans� dTs, which from Eq. (19) requires that
Cs/Cw� 1 (as Tws � Cwy/Ra1/5) . Otherwise the transition
will occur in a region very close to the plate origin where
the non-stratified dT scaling obtained above, which is based
on the assumption that dT� y, is not valid. In this region it
may be assumed that the basic balance is between vertical
and horizontal diffusion in the temperature equation

a
DT

d2
T

� a
DT
y2
;

giving the relation dT � y, which will then provide the scal-
ing for the transition point

ytrans � dT:

With dT obtained from the steady state stratified scaling
this gives

ytrans �
ma

gbCs

� �1=4

; ð20Þ

for large Cs/Cw.
The behaviour of the boundary layer with stratified

ambient fluid in the small y region is therefore determined
by the ratio of the stratification to the horizontal tempera-
ture gradient on the boundary, Cs/Cw. For all Cs/Cw a dif-
fusive region will exist for very small y, for large Cs/Cw the
flow will transit directly to the one-dimensional boundary
layer with increasing y, while for small Cs/Cw an intermedi-
ate y region will exist in which the flow obeys the non-strat-
ified scaling relations.
3. Numerical results

3.1. Non-stratified, Cs = 0

The governing equations are recast in non-dimensional
form using the characteristic velocity and time scales given
above. This also requires a characteristic length scale, how-
ever in the semi-infinite plate flow considered here there is
no natural fixed geometric length scale, the only natural
scales are the distance from the plate origin and the bound-
ary layer thickness, which are both variable. In this case it
is common to choose an arbitrary characteristic length,
here denoted H, to allow the equations to be non-dimen-
sionalised [15]. For the non-stratified flow the characteristic
velocity is, from (9), U ¼ a

H Ra2=5, the characteristic time is,
from (8), t = H2/(aRa2/5) and the characteristic tempera-
ture is T = CwH (the full form of (11) is not used for the
temperature scaling as that would require the inclusion of
the Rayleigh number in the boundary conditions). The
non-dimensional equations are then

ut þ uux þ vuy ¼ �px þ
Pr

Ra2=5
ðuxx þ uyyÞ; ð21Þ

vt þ uvx þ vvy ¼ �py þ
Pr

Ra2=5
ðvxx þ vyyÞ þ PrRa1=5T ; ð22Þ

ux þ vy ¼ 0; ð23Þ

T t þ uT x þ vT y þ vT y ¼
1

Ra2=5
ðT xx þ T yyÞ: ð24Þ

All quantities, u, v, p, T, t, x, y are now non-dimensional.
Some insight into the behaviour of the solution may also
be obtained by inspecting the non-dimensional equations.
Increasing the Rayleigh number is seen to correspond to
a reduction in viscous and diffusive effects, and would
therefore be expected to be associated with the onset of
instability and turbulence. Increasing the Prandtl number
will proportionally reduce the diffusive effects with respect
to the viscous effects, reducing the stabilising effect of the
diffusive terms.

The governing equations are discretised on a non-
staggered mesh using finite volumes, with standard second-
order central difference schemes used for the viscous,
pressure gradient and divergence terms. The QUICK
third-order upwind scheme [24], which has been widely
used for buoyancy-affected flows [25–32], is used for the
advective terms. The second-order Adams–Bashforth
scheme and Crank–Nicolson scheme are used for the time
integration of the advective terms and the diffusive terms,
respectively. To enforce continuity, the pressure correction
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approach is used to construct a Poisson’s equation which is
solved using the preconditioned GMRES method. Detailed
descriptions of these schemes are given in [33–35] and the
code has been widely used for the simulation of a range
of buoyancy dominated flows (see, e.g., [36–42]).
3.1.1. Domain and boundary conditions

The semi-infinite vertical plate in an infinite domain is
modelled by solving the non-dimensional governing equa-
tions in the domain �0.2 6 y 6 1.5, 0 6 x 6 0.5, t P 0,
with the boundary conditions

u ¼ v ¼ 0; T x ¼ �1 at x ¼ 0 for y > 0;

u ¼ v ¼ 0; T x ¼ 0 at x ¼ 0 for y < 0;

ux ¼ T x ¼ v ¼ 0 for x ¼ 0:5;

uyy ¼ vyy ¼ T yy ¼ 0 for y ¼ 1:5;

u ¼ v ¼ T y ¼ 0 for y ¼ �0:2:

At time t < 0 the fluid is quiescent and isothermal with
T = 0. At time t = 0 the above boundary conditions are
applied and the flow is allowed to develop.

The domain is discretised with a non-uniform rectangu-
lar grid with Dx = 2.0 � 10�4 at the wall, expanding
at a maximum rate of 5% away from the wall and
Dy = 5.0 � 10�4 at y = 0, expanding at a maximum rate
of 5% away from y = 0. This gives a grid of 89 � 194 nodes
in the x and y directions respectively. A time-step of
Dt = 1.5 � 10�4 has been used. An extensive mesh and
time-step dependency analysis has been carried out to
ensure that the solution is accurate for these values. Addi-
tionally tests have been carried out to ensure the finite
domain size is not affecting the accuracy of the solution at
the locations shown below.
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–0.2
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0.4
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0.8

0 0.1 0.2 0.3 0.4
–0.2
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0.2

0.4

0.6

0.8

(a) Stream function (b) Temperature

Fig. 4. Stream function and temperature contours for the fully developed
non-stratified flow.
3.1.2. Non-dimensional scales

The scaling relations are also converted to non-dimen-
sional form using the characteristic velocity, length and
temperature scales given above. During the start-up phase
of the flow the non-dimensional velocity and time scales are
obtained in non-dimensional form as

v � t3=2; ð25Þ

dT �
t1=2

Ra1=5
: ð26Þ

Time to steady-state, boundary layer thickness, velocity
and wall temperature at steady-state, are obtained as

ts � y2=5; ð27Þ

dTs �
y1=5

Ra1=5
; ð28Þ

vs � y3=5; ð29Þ

T ws �
y1=5

Ra1=5
: ð30Þ
3.1.3. Results

Fig. 4 contains fully developed stream function and tem-
perature contours for the case with a non-stratified ambient
fluid, Ra = 3 � 108 and Pr = 7.0. The stream function con-
tours show the basic structure of the flow, with the bound-
ary layer formed adjacent to the heated part of the x = 0
boundary, y P 0, entraining fluid through the far-field
open boundary and discharging it downstream. The tem-
perature contours clearly show the heated region of the
x = 0 boundary, corresponding to the heated plate, and
show the increase in width and intensity with increasing y.

Fig. 5 contains the temperature time series obtained at
four heights on the heated plate. Fig. 5(a) contains the
raw data showing the basic development of the flow, with
all the time series overlaying each other for early time
showing the one-dimensional nature of the early time flow.
With increasing time the lower y value time series diverge
from the higher y values, showing the transition to two-
dimensional flow at each height. After divergence the tem-
perature continues to develop at each height, passing
through a small overshoot and ultimately reaching a steady
state. Fig. 5(b) shows the same time series results, but with
both the temperature scaled by y1/5 and time scaled by y2/5,
the steady state scaling for the wall temperature Tws, and
the scaling for time to steady-state, ts, respectively. The sca-
lings clearly collapse the solutions onto a single curve val-
idating the relations. In Fig. 5(c) the time is further scaled
by taking its square root, reflecting the start-up behaviour
given in (26), with the resulting linear relation between
T/y1/5 and (t/y2/5)1/2 in the region (t/y2/5)1/2 < 1.5 validating
this relation.
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Fig. 5. Temperature time series in raw and scaled form for the non-stratified flow.
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Fig. 6 contains horizontal profiles of the vertical velocity
at four heights at steady-state, with the raw data shown in
Fig. 6(a). The profiles show the typical structure of the nat-
ural convection boundary layer, with a large shear layer
adjacent to the heated plate and a lower shear layer reach-
ing into the far field, with the velocity there reducing to
zero. The scalings obtained above show that the velocity
will depend on y3/5, and the boundary layer width will
depend on y1/5. The vertical velocity profiles with these sca-
lings are shown in Fig. 6(b), where it is seen that the solu-
tions are collapsed onto a single curve, validating these
relations.

Fig. 7 contains the temperature profiles at a range of
heights, with the raw data shown in Fig. 7(a). The temper-
ature on the plate and the boundary layer width are seen to
increase with height. The scaling shows that the plate tem-
perature will depend on y1/5, and the boundary layer width
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0

0.2

0.4

0.6

0.8

V
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y=0.5
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(a) Raw data

Fig. 6. Vertical velocity profiles in raw and scaled f
will also depend on y1/5. The scaled results are presented in
Fig. 7(b) showing that the scalings collapse all the solutions
onto a single curve, validating these relations.

It is noted that while the velocity and temperature
boundary layers obey the same scaling relation for width,
that is dT � y1/5, the velocity boundary layer is consider-
ably thicker than the thermal boundary layer. The velocity
boundary layer will grow at order O(m1/2t1/2) and it is there-
fore expected that the velocity boundary layer thickness
dv � Pr1/2dT, making the velocity boundary layer approxi-
mately 2.5 times thicker than the thermal boundary layer
for Prandtl number Pr = 7, as observed here.

3.2. Stratified, Cs > 0

The scaling analysis given above indicates the stratified
flow has two distinct regions, a small y region in which
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V
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3/
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(b) Velocity and x scaled

orm for the fully developed non-stratified flow.
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Fig. 7. Temperature profiles in raw and scaled form for the fully developed non-stratified flow.
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ig. 8. Stream function and temperature contours for the fully developed
tratified background flow.
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the fully developed flow is y dependent, and a large y

region in which the fully developed flow is independent
of y. This behaviour is associated with different scaling
relations. In this section the effect of the stratification on
the flow will be demonstrated, and as such it is appropriate
to recast the governing equations in non-dimensional form
using the scalings associated with the large y region. The
characteristic velocity, length, time and temperature scales
are then obtained from the scalings for the steady state
velocity, boundary layer thickness and wall temperature
in the large y region, as

U ¼
ffiffiffi
2
p

Cw

gb
m

� �1=4 a
Cs

� �3=4

;

d ¼
ffiffiffi
2
p am

gbCs

� �1=4

;

t ¼ 1

Cw

mCs

gab

� �1=2

;

DT ¼ Cwd:

This gives the non-dimensional equations

ut þ uux þ vuy ¼ �px þ
1

Re
ðuxx þ uyyÞ; ð31Þ

vt þ uvx þ vvy ¼ �py þ
1

Re
ðvxx þ vyyÞ þ

2

Re
T ; ð32Þ

ux þ vy ¼ 0; ð33Þ

T t þ uT x þ vT y þ v
2

RePr
¼ 1

RePr
ðT xx þ T yyÞ: ð34Þ

where the Reynolds number Re ¼ Cw2
CsPr. The

ffiffiffi
2
p

in the veloc-
ity and length scalings given above has been included to nor-
malise the scaled exact solution for T(x), given in Eq. (36)
below, such that T(0) = 1.0. Again all quantities u, v, p, T,
t, x, y are now non-dimensional and the numerical
scheme is as described above. Inspection of the scaled
non-dimensional equations shows that an increase in Re will
lead to a reduction in viscous and diffusive effects and would
be associated with instability, as well as reducing the
coupling between the dynamics and the thermo-dynamics.
3.2.1. Domain and boundary conditions

The governing equations are solved in the domain
�Y/5 6 y 6 Y, 0 6 x 6 X, t P 0, with the boundary
conditions

u ¼ v ¼ 0; T x ¼ �1 at x ¼ 0 for y > 0;

u ¼ v ¼ 0; T x ¼ 0 at x ¼ 0 for y < 0;

ux ¼ T x ¼ v ¼ 0 for x ¼ X ;
uyy ¼ vyy ¼ T yy ¼ 0 for y ¼ Y ;
u ¼ v ¼ T y ¼ 0 for y ¼ �Y =5;

where Y is chosen large enough at each Re to ensure that
Y� ytrans for that flow. The limit on X was then largely
determined by numerical stability constraints, with X being
increased with Y, even though the boundary layer width
dTs is constant in the scaled variables. For example at
Re = 0.14, Y = 200, X = 15, while at Re = 140, Y = 2000,
X = 40. An appropriate grid size and time step was also
F
s



100 200

t

0

0.2

0.4

0.6

0.8

1

T

Re=0.14
Re=1.4
Re=7
Re=140

0 10 20 30 40 50
t/Re

0

0.2

0.4

0.6

0.8

1

T

Re=0.14
Re=1.4
Re=7
Re=140

0 2 4 6 8

(t/Re)
1/2

0

0.2

0.4

0.6

0.8

1
T

Re=0.14
Re=1.4
Re=7
Re=140

(b) Time scaled(a) Raw data

(c) Time scaled

Fig. 9. Temperature time series for the stratified background flow.
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determined for each Re, with Dx = 0.01 for all cases, Dy

varying from 0.1 for Re = 0.014 to 2 for Re = 140 and Dt

varying from 2 � 10�5 for Re = 0.014 to 2 � 10�3 for
Re = 140, with the grid stretching again limited to a maxi-
mum of 5%.

3.2.2. Non-dimensional scales

The scaling for the stratified flow presented above
suggests that away from the plate origin for y > ytrans, the
temperature and velocity fields will be independent of y.
Applying this assumption to the scaled equations for the
stratified flow, given above, allows all y derivative terms
to be dropped and an analytic solution to be obtained of
the form [4,23]

vðxÞ ¼ e�x sin x; ð35Þ
T ðxÞ ¼ e�x cos x: ð36Þ
Non-dimensional time to steady-state in the y > ytrans

region will be

ts � RePr: ð37Þ

In the scaling section two relations were obtained for
ytrans, (19) for small Cs/Cw and (20) for large Cs/Cw. From
the definition of the Reynolds number given above, small
Cs/Cw corresponds to large Re, and vice-versa. Therefore
the two scalings for ytrans in non-dimensional form will
be; for large Re,

ytrans � Re; ð38Þ
and for small Re,

ytrans � Oð1Þ: ð39Þ
3.2.3. Results

Fig. 8 contains the stream function and temperature
contours for the fully developed flow with stratified ambi-
ent fluid for Re = 7 and Pr = 7. In this case the horizontal
direction has been stretched to more clearly show the struc-
ture of boundary layer, which is otherwise too narrow to
allow the features to be readily discerned. The flow has a
region of y variation near to the plate origin, while away
from this region the flow is one-dimensional with no y var-
iation, as predicted by the scaling analysis.

Fig. 9 contains the temperature time series obtained on
the plate for four Reynolds numbers. For each Reynolds
number the height chosen is such that the flow at the large
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Fig. 11. Vertical temperature variation with y at x = 0 for the fully developed stratified background flow.
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y boundary is in the one-dimensional region at steady-
state, and the locations of the time-series have been chosen
to ensure that they are in the one-dimensional region.
Fig. 9(a) contains the raw results, where the large variation
in development time is seen. The data with time scaled by
Re are shown in Fig. 9(b) where it is seen that all the solu-
tions are collapsed onto a single curve, validating the scal-
ing relation for time to full development in the flow with
stratified ambient fluid. The scaled time has been further
scaled by taking its square root, shown in Fig. 9(c). The
start-up scales for the stratified flow are expected to be
the same as those for the non-stratified flow, which has
been shown to have a square-root relation with time during
the start-up phase. In Fig. 9(c) a linear relation is seen to
exist between T and (t/Re)1/2 for (t/Re)1/2 < 1.5 indicating
during this phase of the start-up the temperature is behav-
ing as for the non-stratified flow. During the later stages of
start-up, as the flow transitions to steady-state, the relation
is seen to diverge from linear, indicating that the stratified
flow is diverging from the non-stratified behaviour.

Fig. 10 contains horizontal profiles of the vertical-veloc-
ity and temperature obtained at three Reynolds numbers in
the upper, y independent, region of the flow, together with
the exact y independent solution given above in Eqs. (35)
and (36). As can be seen the numerical solutions exactly
match the analytic solutions, confirming the accuracy of
the numerical result and further validating the scaling
result showing that the large y boundary layer is y indepen-
dent at full development.

Fig. 11 contains the vertical variation of the temperature
at full development on the plate, at x = 0.0, for five Rey-
nolds numbers. Fig. 11(a) shows the raw data where it is
seen that the extent of the y dependent regions increase
with Reynolds number. For the highest Reynolds numbers
shown the y extent of the graph is not sufficient to show the
transition to y independence, however all results do show a
transition to y independence, with ytrans at approximately
y = 1400 for the Re = 140 result. In non-dimensional form
the scaling for ytrans for strong stratification is ytrans � O(1),
while for weak stratification, ytrans � Re. Strong stratifica-
tion corresponds to small Re, and in Fig. 11(a) it is seen
that the temperature profiles for Re < 1 lie approximately
on top of each other indicating that ytrans is then indepen-
dent of Re as predicted by the scaling. The same results are
shown in Fig. 11(b), but with y divided by Re. In this case
the Re > 1 results lie approximately on top of each other
confirming the scaling prediction for weak stratification.
It is observed that for Re < 1, ytrans ’ 10 and for Re > 1,
ytrans ’ 10Re.

4. Conclusions

Scaling relations for the start-up, transition and full
development of the natural convection boundary layer
adjacent to an evenly heated vertical semi-infinite plate
with isoflux boundary condition have been obtained. The
scalings describe the rate of growth of the boundary layer
velocity, temperature and thermal boundary layer width,
as well as the transition time and fully developed values,
for both neutral and stable linearly stratified ambient
fluids. In particular the scaling results indicate that at full
development the stratified case will have a region of
two-dimensional flow near to the plate origin, while the
remainder of the flow, far from the plate origin, will be
one-dimensional.

The scaling results provided appropriate velocity and
time scales for the non-stratified case. The governing equa-
tions were non-dimensionalised using these scales together
with an arbitrary length scale, showing that the control
parameters for this flow are a Rayleigh number, based on
the length scale H, and the Prandtl number Pr. Numerical
solutions to the non-dimensionalised equations were used
to validate the scaling relations.

The scaling results showed that the appropriate length
scale for the stratified case, far from the plate origin, is
the boundary layer thickness. Using this and the boundary
layer velocity to non-dimensionalise the governing equa-
tions shows that the control parameters are the Prandtl
number and the temperature gradient ratio Cs/Cw. The
equations were written in terms of a Reynolds number that
is inversely proportional to the temperature gradient ratio.
It appears that there is no similarity transformation relat-
ing the fully developed stratified flow far from the plate ori-
gin to the fully developed non-stratified flow, as allowing
Cs ? 0 gives Re ?1. The assumption that the fully dev-
eloped stratified flow is one-dimensional far from the plate
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origin allows an analytic solution to be obtained that is
independent of the control parameters. The scaling for
transition from the near plate origin two-dimensional flow
to the one-dimensional flow has two forms; for large Re it
varies with the Reynolds number, while for small Re it is
O(1). Numerical solutions confirmed that the analytic solu-
tion is correct for the one-dimensional region of the fully
developed flow, and that the start-up and transition behav-
iour is correctly predicted by the time scaling. The scaling
for the two- to one-dimensional transition location was
also shown to be correctly represented by the scaling
relation.
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diffusivity model for large-eddy simulation of buoyancy-driven flows:
application to a square differentially heated cavity, Numer. Heat
Transfer A: Appl. 44 (2003) 789–810.

[32] M.A. Randriazanamparany, A. Skouta, M. Daguenet, Numerical
study of the transition toward chaos of two-dimensional natural
convection within a square cavity, Numer. Heat Transfer A: Appl. 48
(2005) 127–147.

[33] S.W. Armfield, Finite difference solutions of the Navier–Stokes
equations on staggered and non-staggered grids, Comput. Fluids 20
(1991) 1–17.

[34] S.W. Armfield, Ellipticity, accuracy and convergence of the discrete
Navier–Stokes equations, J. Comput. Phys. 114 (1994) 176–184.

[35] S.W. Armfield, R. Street, Fractional step methods for the Navier–
Stokes equations on non-staggered grids, ANZIAM J. 42 (2000)
C134–C156.

[36] S.W. Armfield, J.C. Patterson, Direct simulation of wave interactions
in unsteady natural convection in a cavity, Int. J. Heat Mass Transfer
34 (1991) 929–940.

[37] S.W. Armfield, W. Debler, Purging of density stabilized basins, Int. J.
Heat Mass Transfer 36 (1993) 519–530.

[38] W. Lin, S.W. Armfield, Direct simulation of natural convection
cooling in a vertical circular cylinder, Int. J. Heat Mass Transfer 42
(1999) 4117–4130.

[39] W. Lin, S.W. Armfield, Direct simulation of weak axisymmetric
fountains in a homogeneous fluid, J. Fluid Mech. 403 (2000) 67–88.

[40] W. Lin, S.W. Armfield, Very weak fountains in a homogeneous fluid,
Numer. Heat Transfer A: Appl. 38 (2000) 377–396.

[41] W. Lin, S.W. Armfield, Long-term behavior of cooling fluid in a
rectangular container, Phys. Rev. E 69 (2004) 056315.

[42] W. Lin, S.W. Armfield, Long-term behavior of cooling fluid in a
vertical cylinder, Int. J. Heat Mass Transfer 48 (2005) 53–66.


	Scaling investigation of the natural convection boundary layer on an evenly heated plate
	Introduction
	Scaling
	Non-stratified,  Gamma s=0
	Stratified,  Gamma s gt 0

	Numerical results
	Non-stratified,  Gamma s=0
	Domain and boundary conditions
	Non-dimensional scales
	Results

	Stratified,  Gamma s gt 0
	Domain and boundary conditions
	Non-dimensional scales
	Results


	Conclusions
	Acknowledgement
	References


